

Werkstoffdatenblatt - Stranggepresste Profile Legierung EN AW-6101A/B [EN AW AlMgSi(A/B)]

Die Legierungen 6101A und 6101B sind speziell für Anwendungen gedacht, die eine hohe Leitfähigkeit erfordern, und haben Festigkeitseigenschaften ähnlich der am häufigsten eingesetzten Konstruktionslegierung EN AW-6060.

Typische Anwendungen

• Elektrische Leiterschienen

Wärmetauscher

Chemische Zusammensetzung 1

	Si		Fe		Cu		Mn		Mg		Cr		Zn		Ti		Andere	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Einzeln	Total
6101A	0,30	0,7		0,40		0,05			0,40	0,9							0,03	0,10
6101B	0,30	0,6	0,10	0,30		0,05		0,05	0,35	0,6				0,10			0,03	0,10

¹ Chemische Zusammensetzung gemäß EN-573-3:2013

Mechanische Eigenschaften 2,3

Legierung - Zustand	Wandicke t [mm]	R _{p0,2} [MPa]	R _m [MPa]	A [%]	A _{50mm} [%]	HBW° TYPISCHERWE RT	Vickers c TYPISCHERWE RT
6101A-T6 ^a	t ≤ 50	170	200	10	8	70	80
6101B-T6 ^{a b}	t ≤ 15	160	215	8	6	70	80
6101B-T7 ^{a c}	t ≤ 15	120	170	12	10	60	68

² Eigenschaften gemäß EN 755-2:2016 für stranggepresste Profile, Mindestwerte.

Zustandsbeschreibungen 4

Т6	Lösungsgeglüht und warmausgelagert
Т7	Lösungsgeglüht und überhärtet (überaltert)

⁴Zustände gemäß EN 515:1993

Technologische Eigenschaften 5

Zustand	E-Modul [GPa]	Schubmodul [GPa]	Schmelzbereich [°C]	Dichte [g/cm³]		Spezifische Wärme- kapazität [J/kg·K]	Elektr.	Elektrische Leitfähigkeit [MS/m]	Ausdehnungs- koeffizient [10 ⁻⁶ K ⁻¹]
	70	26	590 - 650	2,70		901			23,5
Т6					218		30	30 (T6) 32 (T7)	

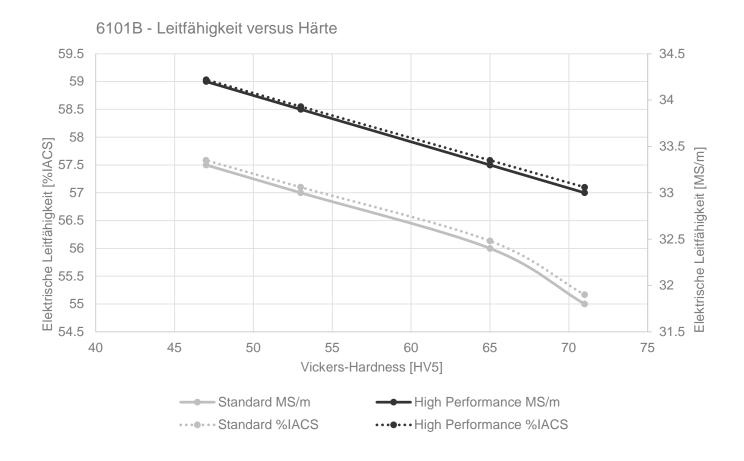
⁵ Quelle: MNC Handbok nr 12, Version 2, SIS, 1989. Typische Eigenschaften bei Raumtemperatur 20°C

³ Wenn der Querschnitt eines Profil sich aus unterschiedlichen Dicken zusammensetzt, denen verschiedene Werte der mechanischen Eigenschaften zugeordnet sind, gelten die jeweils niedrigsten festgelegten Werte für den gesamten Querschnitt des Profils.

^a Eigenschaften werden durch Abschrecken an der Strangpresse erzielt.

^b Elektrische Leitfähigkeit ≥ 30 MS/m

^c Elektrische Leitfähigkeit ≥ 32 MS/m


d Brinell-Härte nur zur Information. Vickers Härtewerte sind aus Brinell errechnet und sollten als Mittelwerte verstanden werden.

Werkstoffdatenblatt - Stranggepresste Profile Legierung EN AW-6101A/B [EN AW AlMgSi(A/B)]

Verhalten Leitfähigkeit versus Materialhärte

Die Leitfähigkeit kann erhöht werden, allerdings zu Lasten der Festigkeit. Im unteren Diagramm erkennt man das typische Verhalten von Leitfähigkeit gegenüber Vickers-Härte. Diese Angaben stammen aus spezifischen Proben und dienen als Richtlinie. Die angegebenen Werte können nicht garantiert werden.

